Higher-order finite element methods for elliptic problems with interfaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces

We define higher-order analogs to the piecewise linear surface finite element method studied in [Dz88] and prove error estimates in both pointwise and L2-based norms. Using the Laplace-Beltrami problem on an implicitly defined surface Γ as a model PDE, we define Lagrange finite element methods of arbitrary degree on polynomial approximations to Γ which likewise are of arbitrary degree. Then we ...

متن کامل

Higher Degree Immersed Finite Element Methods for Second-order Elliptic Interface Problems

We present higher degree immersed finite element (IFE) spaces that can be used to solve two dimensional second order elliptic interface problems without requiring the mesh to be aligned with the material interfaces. The interpolation errors in the proposed piecewise p degree spaces yield optimal O(hp+1) and O(h) convergence rates in the L2 and broken H1 norms, respectively, under mesh refinemen...

متن کامل

Mixed Finite Element Methods for Elliptic Problems*

This paper treats the basic ideas of mixed finite element methods at an introductory level. Although the viewpoint presented is that of a mathematician, the paper is aimed at practitioners and the mathematical prerequisites are kept to a minimum. A classification of variational principles and of the corresponding weak formulations and Galerkin methods—displacement, equilibrium, and mixed—is giv...

متن کامل

Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients

Elliptic partial differential equations (PDEs) with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electro-magnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on th...

متن کامل

On the Stability and Convergence of Higher-order Mixed Finite Element Methods for Second-order Elliptic Problems

We investigate the use of higher-order mixed methods for secondorder elliptic problems by establishing refined stability and convergence estimates which take into account both the mesh size h and polynomial degree p . Our estimates yield asymptotic convergence rates for the pand h p-versions of the finite element method. They also describe more accurately than previously proved estimates the in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Mathematical Modelling and Numerical Analysis

سال: 2016

ISSN: 0764-583X,1290-3841

DOI: 10.1051/m2an/2015093